Paul Marter

Research Assistant

M.Sc. Paul Marter

Institute of Materials, Technologies and Mechanics (IWTM)
Chair of Computational Mechanics
Universitätsplatz 2, 39106 Magdeburg, G10-023
Vita

seit 01/2020

Wissenschaftlicher Mitarbeiter am IWTM (vorher IFME) , Professur Numerische Mechanik (Prof. Juhre)

2017-2019

Entwicklungsingenieur bei IFA Technologies GmbH (Teilzeit)

2017-2019

Master-Studium Maschinenbau Vertiefungsrichtung Produktentwicklung an der Otto-von-Guericke Universität Magdeburg

2013-2017

Duales Bachelor-Studium Maschinenbau Vertiefungsrichtung Mechanik an der Otto-von-Guericke Universität Magdeburg

Projects

Completed projects

26592_ Extension of fictitious domain methods for vibroacoustic issues - analysis of heterogeneous insulation materials
Duration: 01.04.2023 bis 31.03.2025

The project is dedicated to the development of an efficient calculation method for solving three-dimensional vibroacoustic problems using porous insulation materials. The aim is to resolve the microstructure of the insulation material in order to overcome the current limitations of Biot's theory, which is often used and seems particularly unsuitable for modeling closed-cell foams. In order to enable the extremely complex geometry-resolved modeling we are aiming for, fictitious domain methods with higher-order approach functions are to be used. On the one hand, these can be applied very advantageously to voxel data and, on the other hand, a high efficiency for wave propagation problems can be expected.

View project in the research portal

Optimization of the design of mesoscale piezoelectric motors for robotic applications
Duration: 01.01.2021 bis 31.12.2022

Robotics has developed by leaps and bounds over the last few decades and many of the challenges of medium to large scale robotics have found suitable solutions. However, at the mesoscale, on the order of a millimeter to centimeters, few of these challenges have been addressed, chief among them, fabrication and actuation. Due to favourable scaling characteristics, piezoelectric actuation becomes more appropriate than electromagnetic actuation at small scales. Piezoelectric materials provide an actuation as they are materials that generate strain when a voltage is applied to them. They also generate a voltage when strained, which gives them the capability to operate as sensors or actuators, or both simultaneously. Due to their small total displacement, large bandwidth, and lack of friction, they have the ability to generate fast and precise movements.

The overall goal is to optimize a new class of piezoelectric motors based on a series of unimorph (a piezoelectric material bonded to a substrate) arms. The Canadian partner, Assistant Prof. Dr. Ryan Orszulik, has recently designed and fabricated a series of prototypes of a piezoelectric motor which has a planar rotor diameter of 9 mm, stator diameter of 8 mm, a total integrated motor thickness of 0.8 mm, weighs approximately 200 milligrams, and is capable of producing bidirectional motion with relatively low rotational speeds but high torque. However, a number of challenges remain, the most important of which is optimizing the torque density of the motor. For this purpose a numerical optimization will be used, which considers the mass and volume limitations, in order to achieve much higher torques without compromising structural integrity. This multi-objective optimization is a very challenging task, especially on such small scales. For mesoscale robotic applications, it is the torque that is of the greatest interest as it mitigates the need for a gearbox, which is very difficult to manufacture and integrate at these small scales. The unimorph based piezoelectric motor that is the focus of this project is simpler to construct, as it relies on non-standard planar fabrication techniques, and requires only a single drive source at a lower frequency to produce a high torque. In this research program, the goal is to leverage new fabrication techniques to create and miniaturize these piezoelectric motors, test them, and optimize them via analytical and finite element techniques. By employing the developed design, modeling, and fabrication techniques, a number of applications will be pursued including miniature autonomous vehicles and surgical instruments. The most promising possible application, which would create further opportunities for collaboration with the satellite design laboratory at York University, is to use these motors as the actuator for single gimbal control moment gyroscopes in pico to femto class satellites.

View project in the research portal

Innovative simulation methods for the acoustic design of automobiles
Duration: 01.07.2019 bis 30.09.2022

This project is a cooperation between the Chair of Multibody Dynamics and the Chair of Computational Mechanics with one research assistant from each partner. The core objective of the project is the development of a practical simulation methodology for calculating the noise emissions of engines and their psychoacoustic evaluation. This makes it possible to directly trace the effects of structural modifications (stiffness, mass distribution) and tribological system parameters (bearing clearances, viscosity, deaxialization and filling level) back to the excitation mechanisms and the internal structure-borne sound paths and to preventively combat them in terms of acoustic optimization through design and tribological measures. This purely virtual engineering approach is intended to do entirely without real prototypes and thus enable an acoustic evaluation early on in the engine development process. In this way, design measures to improve acoustic quality can be implemented in coordination with the development groups of adjacent subject areas without negatively influencing other important design criteria such as performance, pollutant emissions or total mass.
In contrast, passive measures to combat noise emissions through insulation, for example, are generally cost-intensive, as they require additional material as well as additional assembly steps and therefore have an impact on the production process. At the same time, this runs counter to the idea of lightweight construction, reduced consumption and environmental friendliness and leads to additional installation space being required, which is usually a very scarce resource in the development of modern engines and automobiles. The fundamental problem with these insulation measures, which are being used more and more frequently these days, is their symptomatic approach, which combats the effect but ignores the causes of the acoustic disturbance.
The holistic methodology that is the focus of this project, on the other hand, makes it possible to directly analyze and combat the cause of the disruptive noise emissions. In addition, the psychoacoustic evaluation of the sound emission allows it to be categorized into disturbing and less disturbing sound emissions. In this way, the design can be specifically modified so that the resulting noise is classified as more pleasant by people; after all, a quiet noise can still be perceived as more disturbing than a loud one.
This text was translated with DeepL

View project in the research portal

Publications

2024

Peer-reviewed journal article

Experimental characterization of acoustic damping materials

Marter, Paul; Radtke, Lars; Eisenträger, Sascha; Düster, Alexander; Juhre, Daniel

In: Proceedings in applied mathematics and mechanics - Weinheim : Wiley-VCH, Bd. 24 (2024), Heft 3, Artikel e202400143, insges. 10 S.

Bidirectional motion of a planar fabricated piezoelectric motor based on unimorph arms

Marter, Paul; Khramova, Margarita; Duvigneau, Fabian; Wood, Robert J.; Juhre, Daniel; Orszulik, Ryan

In: Sensors and actuators. A, Physical - Amsterdam [u.a.] : Elsevier Science, Bd. 377 (2024), Artikel 115642, insges. 9 S.

Vibroacoustic simulations of acoustic damping materials using a fictitious domain approach

Radtke, Lars; Marter, Paul; Duvigneau, Fabian; Eisenträger, Sascha; Juhre, Daniel; Düster, Alexander

In: Journal of sound and vibration - London : Academic Press, Bd. 568 (2024), Artikel 118058, insges. 13 S.

An automatic simulation pipeline for coupled simulations of acoustic damping materials

Radtke, Lars; Marter, Paul; Eisenträger, Sascha; Juhre, Daniel; Düster, Alexander

In: Proceedings in applied mathematics and mechanics - Weinheim : Wiley-VCH, Bd. 24 (2024), Heft 3, Artikel e202400093, insges. 13 S.

2023

Peer-reviewed journal article

FE‐based modeling of a mesoscale piezoelectric motor

Marter, Paul; Duvigneau, Fabian; Orszulik, Ryan; Juhre, Daniel

In: Proceedings in applied mathematics and mechanics - Weinheim : Wiley-VCH, Bd. 22 (2023), Heft 1, Artikel e202200314, insges. 6 S.

2021

Book chapter

Gekoppelter Simulationsansatz zur Schwingungsanalyse einer Zentrifuge

Marter, Paul; Daniel, Christian; Duvigneau, Fabian; Woschke, Elmar; Juhre, Daniel

In: Fortschritte der Akustik - DAGA 2021 - Berlin : Deutsche Gesellschaft für Akustik e.V. (DEGA) [Tagung: 47. Jahrestagung für Akustik, DAGA 2021, Wien, 15. bis 18. August 2021]

Peer-reviewed journal article

Consideration of rubber bushings in a multi-body simulation by detailed finite element models

Marter, Paul; Daniel, Christian; Duvigneau, Fabian; Woschke, Elmar; Juhre, Daniel

In: Proceedings in applied mathematics and mechanics - Weinheim [u.a.] : Wiley-VCH, Bd. 21 (2021), Heft 1, Artikel e202100064, insges. 2 S. [Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)]

2020

Peer-reviewed journal article

Numerical analysis based on a multi-body simulation for a plunging type constant velocity joint

Marter, Paul; Daniel, Christian; Duvigneau, Fabian; Woschke, Elmar

In: Applied Sciences - Basel : MDPI - Volume 10 (2020), issue 11, article 3715, 18 Seiten

Last Modification: 19.12.2024 - Contact Person: Webmaster